Crumpled Graphene Photodetector

    Plasmonically Enhanced Crumpled Graphene Photodetector

  1. S. Kwon, J. Shin, J. Choi, S. Nam, and W. Park, "Defect-Mediated Molecular Interaction and Charge Transfer in Graphene Mesh–Glucose Sensors" ACS Applied Materials and Interfaces, Article ASAP.
  2. M.C. Wang, J. Leem, P. Kang, J. Choi, P. Knapp, K. Yong, and S. Nam, "Mechanical instability driven self-assembly and architecturing of 2D materials" 2D Materials, 4, 022002 (2017).
  3. J. Choi, J. Mun, M.C. Wang, A. Ashraf, S. Kang, and S. Nam, "Hierarchical, Dual Scale Structures of Atomically-thin MoS2 for Tunable Wetting" Nano Letters, 17 (3), 1756-1761 (2017).
  4. M. Kim, P. Kang, J. Leem, and S. Nam, "Stretchable Crumpled Graphene Photodetector with Plasmonically-enhanced Photoresponsivity" Nanoscale, 9, 4058-4065 (2017).
  5. A. Ashraf, Y. Wu, M.C. Wang, K. Yong, T. Sun, Y. Jing, R. Haasch, N. Aluru, and S. Nam, "Doping-Induced Tunable Wettability and Adhesion of Graphene" Nano Letters, 16 (7), 4708-4712 (2016).
  6. A. Ashraf, H. Salih, S. Nam, and S. Dastgheib, "Robust carbon nanotube membranes directly grown on Hastelloy substrates and their potential application for membrane distillation" Carbon, 106, 243-251 (2016).
  7. K. Yong, A. Ashraf, P. Kang, and S. Nam, "Rapid Stencil Mask Fabrication Enabled One-Step Polymer-Free Graphene Patterning and Direct Transfer for Flexible Graphene Devices" Nature Scientific Reports, 6:24890 (2016).
  8. P. Kang, M.C. Wang, P. Knapp, and S. Nam, "Crumpled Graphene Photodetector with Enhanced, Strain-tunable and Wavelength-selective Photoresponsivity" Advanced Materials, 28 (23), 4639–4645 (2016) [Cover Feature]
  9. P. Kang, M.C. Wang, and S. Nam, "Bioelectronics with two-dimensional materials" Microelectronic Engineering, 161, 18-35 (2016).
  10. S. Kwon, J. Yi, W. Lee, J. Shin, S. Kim, S. Cho, S. Nam, and W. Park, "Reversible and Irreversible Responses of Defect-engineered Graphene-based Electrolyte-gated pH Sensors" ACS Applied Materials and Interfaces, 8 (1), 834–839 (2016).
  11. J. Leem, M.C. Wang, P. Kang, and S. Nam, "Mechanically Self-assembled, Three-dimensional Graphene-Gold Hybrid Nanostructures for Advanced Nanoplasmonic Sensors" Nano Letters, 15 (11), 7684-7690 (2015).
  12. J. Yi, S. Kim, W. Lee, S. Kwon, S. Nam, and W. Park, "Graphene meshes decorated with palladium nanoparticles for hydrogen detection" Journal of Physics D: Applied Physics, 48 (475103), (2015).
  13. J. Choi, H. Kim, M.C. Wang, J. Leem, W. King, and S. Nam, "Three-Dimensional Integration of Graphene via Swelling, Shrinking, and Adaptation" Nano Letters, 15 (7), 4525-4531 (2015).
  14. H. Kim, J. Choi, S. Nam, and W. King, "Batch Fabrication of Transfer-Free Graphene-Coated Microcantilevers," IEEE Sensors Journal, 15 (5), 2717-2718 (2015).
  15. M.C. Wang, S. Chun, R.S. Han, A. Asharf, P. Kang, and S. Nam, "Heterogeneous, Three-dimensional Texturing of Graphene," Nano Letters, 15 (3), 1829–1835 (2015). [Cover Feature]
  16. S. Chun, J. Choi, A. Asharf, and S. Nam, "Three-dimensional, Flexible Graphene Bioelectronics," Proc. of IEEE Engineering in Medicine and Biology Society (EMBS) Conference, (2014).
  17. A. Ashraf, Y. Wu, M.C. Wang, N. Aluru, S. Dastgheib, and S. Nam, "Spectroscopic Investigation of the Wettability of Multilayer Graphene using Highly Ordered Pyrolytic Graphite as a Model Material," Langmuir, 30, 12827−12836 (2014).
  18. S. Nam, I. Choi, C. Fu, K. Kim, S. Hong, Y. Choi, A. Zettl, and L. P. Lee, "Graphene Nanopore with a Self-Integrated Optical Antenna," Nano Letters, 14 (10), 5584–5589 (2014).
  19. J. Bang, J. Choi, F. Xia, S. Kwon, A. Ashraf, W. Park, and S. Nam, "Assembly and Densification of Nanowire Arrays via Shrinkage," Nano Letters, 14 (6), 3304–3308 (2014).
  20. J. Choi*, M. C. Wang*, R. Y. S. Cha, W. I. Park, and S. Nam, "Graphene Bioelectronics," Biomedical Engineering Letters, 3 (4), 201-208 (2013).
  21. M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park, K.-H. Choi, H.-K. Kim, D.-G. Kim, D.-Y. Lee, S. Nam and J.-U. Park, “High-performance, Transparent and Stretchable Electrodes using Graphene-Metal Nanowire Hybrid Structures,” Nano Letters, 13 (6), 2814–2821 (2013).
  22. S. Chun, J. Choi, and S. Nam, “All-Carbon Graphene Bioelectronics,” Proc. of IEEE Engineering in Medicine and Biology Society (EMBS) Conference (2013).
  23. S. Nam, M.-S. Lee, J.-U. Park, “Monolithic Graphene Transistor Biointerface,” Proc. of IEEE Engineering in Medicine and Biology Society (EMBS) Conference (2012).
  24. J. U. Park*, S. Nam*, M.-S. Lee and C. M. Lieber, “Synthesis of Monolithic Graphene-Graphite Integrated Electronics,” Nature Materials, 11, 120-125 (2012).
  25. H. Yan*, H. Choe*, S. Nam*, Y. Hu, S. Das, J. F. Klemic, J. C. Ellenbogen and C. M. Lieber, “Programmable Nanowire Circuits for Nanoprocessors,” Nature, 470, 240–244 (2011).
  26. S. Nam, X. Jiang, Q. Xiong, D. Ham and C. M. Lieber, “Vertically Integrated, Three-Dimensional Nanowire Complementary Metal-Oxide-Semiconductor Circuits,” Proc. Natl. Acad. Sci. (PNAS) USA, 106 (50), 21035–21038 (2009).
  27. X. Jiang, Q. Xiong, S. Nam, F. Qian, Y. Li and C. M. Lieber, “InAs/InP Radial Nanowire Heterostructures as High Electron Mobility Devices,” Nano Letters, 7 (10), 3214-3218 (2007).
  28. A. Javey*, S. Nam*, R. S. Friedman, H. Yan and C. M. Lieber, “Layer-by-Layer Assembly of Nanowires for Three-Dimensional, Multi-functional Electronics,” Nano Letters, 7 (3), 773–777 (2007).
  29. *Authors with equal contributions.